Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1200, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001239

RESUMEN

The source and roles of fibroblasts and T-cells during maladaptive remodeling and myocardial fibrosis in the setting of pulmonary arterial hypertension (PAH) have been long debated. We demonstrate, using single-cell mass cytometry, a subpopulation of endogenous human cardiac fibroblasts expressing increased levels of CD4, a helper T-cell marker, in addition to myofibroblast markers distributed in human fibrotic RV tissue, interstitial and perivascular lesions in SUGEN/Hypoxia (SuHx) rats, and fibroblasts labeled with pdgfrα CreERt2/+ in R26R-tdTomato mice. Recombinant IL-1ß increases IL-1R, CCR2 receptor expression, modifies the secretome, and differentiates cardiac fibroblasts to form CD68-positive cell clusters. IL-1ß also activates stemness markers, such as NANOG and SOX2, and genes involved in dedifferentiation, lymphoid cell function and metabolic reprogramming. IL-1ß induction of lineage traced primary mouse cardiac fibroblasts causes these cells to lose their fibroblast identity and acquire an immune phenotype. Our results identify IL-1ß induced immune-competency in human cardiac fibroblasts and suggest that fibroblast secretome modulation may constitute a therapeutic approach to PAH and other diseases typified by inflammation and fibrotic remodeling.


Asunto(s)
Corazón , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Fibroblastos/metabolismo , Fibrosis , Miofibroblastos/metabolismo
2.
Cell Commun Signal ; 21(1): 291, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853467

RESUMEN

NF-κB transcription factors are critical regulators of innate and adaptive immunity and major mediators of inflammatory signaling. The NF-κB signaling is dysregulated in a significant number of cancers and drives malignant transformation through maintenance of constitutive pro-survival signaling and downregulation of apoptosis. Overactive NF-κB signaling results in overexpression of pro-inflammatory cytokines, chemokines and/or growth factors leading to accumulation of proliferative signals together with activation of innate and select adaptive immune cells. This state of chronic inflammation is now thought to be linked to induction of malignant transformation, angiogenesis, metastasis, subversion of adaptive immunity, and therapy resistance. Moreover, accumulating evidence indicates the involvement of NF-κB signaling in induction and maintenance of invasive phenotypes linked to epithelial to mesenchymal transition (EMT) and metastasis. In this review we summarize reported links of NF-κB signaling to sequential steps of transition from epithelial to mesenchymal phenotypes. Understanding the involvement of NF-κB in EMT regulation may contribute to formulating optimized therapeutic strategies in cancer. Video Abstract.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , FN-kappa B/metabolismo , Transición Epitelial-Mesenquimal/genética , Transducción de Señal , Neoplasias/metabolismo , Transformación Celular Neoplásica , Fenotipo , Línea Celular Tumoral
3.
Am J Physiol Cell Physiol ; 325(4): C1085-C1096, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694285

RESUMEN

Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiopatías , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/genética , Fibronectinas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos
4.
Exp Mol Pathol ; 134: 104869, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37690529

RESUMEN

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Asunto(s)
Fibronectinas , Integrina alfaV , Animales , Humanos , Ratones , Fibronectinas/genética , Fibronectinas/farmacología , Hemorragia , ARN Guía de Sistemas CRISPR-Cas
5.
Elife ; 122023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204302

RESUMEN

Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.


Asunto(s)
Infarto del Miocardio , Miofibroblastos , Animales , Conejos , Humanos , Anciano , Miofibroblastos/patología , Infarto del Miocardio/patología , Miocitos Cardíacos/fisiología , Arritmias Cardíacas , Fibrosis , Inflamación/patología
6.
Mol Oncol ; 17(11): 2356-2379, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36635880

RESUMEN

Dysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1, or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2, and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on the TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.


Asunto(s)
Proteómica , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Apoptosis/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
7.
Br J Haematol ; 200(6): 740-754, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354085

RESUMEN

While the bone marrow (BM) microenvironment is significantly remodelled in acute myeloid leukaemia (AML), molecular insight into AML-specific alterations in the microenvironment has been historically limited by the analysis of liquid marrow aspirates rather than core biopsies that contain solid-phase BM stroma. We assessed the effect of anthracycline- and cytarabine-based induction chemotherapy on both haematopoietic and non-haematopoietic cells directly in core BM biopsies using RNA-seq and histological analysis. We compared matched human core BM biopsies at diagnosis and 2 weeks after cytarabine- and anthracycline-based induction therapy in responders (<5% blasts present after treatment) and non-responders (≥5% blasts present after treatment). Our data indicated enrichment in vimentin (VIM), platelet-derived growth factor receptor beta (PDGFRB) and Snail family transcriptional repressor 2 (SNAI2) transcripts in responders, consistent with the reactivation of the mesenchymal population in the BM stroma. Enrichment of osteoblast maturation-related transcripts of biglycan (BGN), osteopontin (SPP1) and osteonectin (SPARC) was observed in non-responders. To the best of our knowledge, this is the first report demonstrating distinct osteogenic and mesenchymal transcriptome profiles specific to AML response to induction chemotherapy assessed directly in core BM biopsies. Detailing treatment response-specific alterations in the BM stroma may inform optimised therapeutic strategies for AML.


Asunto(s)
Médula Ósea , Leucemia Mieloide Aguda , Humanos , Médula Ósea/patología , Transcriptoma , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina/uso terapéutico , Células de la Médula Ósea/patología , Antraciclinas/uso terapéutico , Biopsia , Microambiente Tumoral
8.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36297305

RESUMEN

Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35-45 mmHg, followed by resuscitation. Irisin (50 ng/kg) and the vehicle (saline) were administrated at the start of resuscitation. Cardiac function was assessed by echocardiography, and hemodynamics were measured through femoral artery catheterization. A glucose tolerance test was used to evaluate insulin sensitivity. An enzyme-linked immunosorbent assay was performed to detect inflammatory factors in the muscles and blood serum. Western blot was carried out to assess the irisin production in skeletal muscles. Histological analyses were used to determine tissue damage and active-caspase 3 apoptotic signals. The hemorrhage suppressed cardiac performance, as indicated by a reduced ejection fraction and fractional shortening, which was accompanied by enhanced insulin resistance and hyperinsulinemia. Furthermore, the hemorrhage resulted in a marked decrease in irisin and an increase in the production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Additionally, the hemorrhage caused marked edema, inflammatory cell infiltration and active-caspase 3 positive signals in skeletal muscles and cardiac muscles. Irisin treatment led to a significant improvement in the cardiac function of animals exposed to a hemorrhage. In addition, irisin treatment improved insulin sensitivity, which is consistent with the suppressed inflammatory cytokine secretion elicited by hemorrhages. Furthermore, hemorrhage-induced tissue edema, inflammatory cell infiltration, and active-caspase 3 positive signaling were attenuated by irisin treatment. The results suggest that irisin protects against damage from a hemorrhage through the modulation of insulin sensitivity.

9.
Front Cell Dev Biol ; 10: 840894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127689

RESUMEN

The development and use of murine myeloid progenitor cell lines that are conditionally immortalized through expression of HoxB8 has provided a valuable tool for studies of neutrophil biology. Recent work has extended the utility of HoxB8-conditional progenitors to the in vivo setting via their transplantation into irradiated mice. Here, we describe the isolation of HoxB8-conditional progenitor cell lines that are unique in their ability to engraft in the naïve host in the absence of conditioning of the hematopoietic niche. Our results indicate that HoxB8-conditional progenitors engraft in a ß1 integrin-dependent manner and transiently generate donor-derived mature neutrophils. Furthermore, we show that neutrophils derived in vivo from transplanted HoxB8-conditional progenitors are mobilized to the periphery and recruited to sites of inflammation in a manner that depends on the C-X-C chemokine receptor 2 and ß2 integrins, the same mechanisms that have been described for recruitment of endogenous primary neutrophils. Together, our studies advance the understanding of HoxB8-conditional neutrophil progenitors and describe an innovative tool that, by virtue of its ability to engraft in the naïve host, will facilitate mechanistic in vivo experimentation on neutrophils.

10.
Cardiovasc Res ; 118(16): 3211-3224, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35018410

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS: We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION: By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Ratones , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar Primaria Familiar , Hipoxia/complicaciones , Arteria Pulmonar , Modelos Animales de Enfermedad
11.
Front Pharmacol ; 12: 698714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671252

RESUMEN

Background: p38 regulated/activated protein kinase (PRAK) plays a crucial role in modulating cell death and survival. However, the role of PRAK in the regulation of metabolic stress remains unclear. We examined the effects of PRAK on cell survival and mitochondrial function in C2C12 myoblasts in response to high glucose stresses. Methods: PRAK of C2C12 myoblasts was knocked out by using CRISPR/Cas-9 genome editing technology. Both wild type and PRAK-/- C2C12 cells were exposed to high glucose at the concentration of 30 mmol/L to induce metabolic stress. The effect of irisin, an adipomyokine, on both wild type and PRAK-/- cells was determined to explore its relationship with RPAK. Cell viability, ATP product, glucose uptake, mitochondrial damage, and insulin signaling were assessed. Results: PRAK knockout decreased C2C12 viability in response to high glucose stress as evident by MTT assay in association with the reduction of ATP and glucose uptake. PRAK knockout enhanced apoptosis of C2C12 myoblasts in response to high glucose, consistent with an impairment in mitochondrial function, by decreasing mitochondrial membrane potential. PRAK knockout induced impairment of mitochondrial and cell damage were rescued by irisin. PRAK knockout caused decrease in phosphorylated PI3 kinase at Tyr 485, IRS-1 and AMPKα and but did not affect non-phosphorylated PI3 kinase, IRS-1 and AMPKα signaling. High glucose caused the further reduction of phosphorylated PI3 kinase, IRS-1 and AMPKα. Irisin treatment preserved phosphorylated PI3 kinase, IRS-1by rescuing PRAK in high glucose treatment. Conclusion: Our finding indicates a pivotal role of PRAK in preserving cellular survival, mitochondrial function, and high glucose stress.

12.
Blood Adv ; 5(24): 5525-5535, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34551072

RESUMEN

The diagnosis of parenchymal central nervous system (CNS) invasion and prediction of risk for future CNS recurrence are major challenges in the management of aggressive lymphomas, and accurate biomarkers are needed to supplement clinical risk predictors. For this purpose, we studied the results of a next-generation sequencing (NGS)-based assay that detects tumor-derived DNA for clonotypic immunoglobulin gene rearrangements in the cerebrospinal fluid (CSF) of patients with lymphomas. Used as a diagnostic tool, the NGS-minimal residual disease (NGS-MRD) assay detected clonotypic DNA in 100% of CSF samples from 13 patients with known CNS involvement. They included 7 patients with parenchymal brain disease only, whose CSF tested negative by standard cytology and flow cytometry, and 6 historical DNA aliquots collected from patients at a median of 39 months before accession, which had failed to show clonal rearrangements using standard polymerase chain reaction. For risk prognostication, we prospectively collected CSF from 22 patients with newly diagnosed B-cell lymphomas at high clinical risk of CNS recurrence, of whom 8 (36%) had detectable clonotypic DNA in the CSF. Despite intrathecal prophylaxis, a positive assay of CSF was associated with a 29% cumulative risk of CNS recurrence within 12 months of diagnosis, in contrast with a 0% risk among patients with negative CSF (P = .045). These observations suggest that detection of clonotypic DNA can aid in the diagnosis of suspected parenchymal brain recurrence in aggressive lymphoma. Furthermore, the NGS-MRD assay may enhance clinical risk assessment for CNS recurrence among patients with newly diagnosed lymphomas and help select those who may benefit most from novel approaches to CNS-directed prophylaxis.


Asunto(s)
Linfoma de Células B , Linfoma no Hodgkin , Biomarcadores , Sistema Nervioso Central , ADN , Humanos
13.
Am J Physiol Cell Physiol ; 321(3): C569-C584, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288720

RESUMEN

Rheumatoid arthritis (RA) is a debilitating autoimmune disease of unknown cause, characterized by infiltration and accumulation of activated immune cells in the synovial joints where cartilage and bone destructions occur. Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was shown to be involved in the regulation of MDSC differentiation. The purpose of the present study was to investigate the effect of inhibition of SHIP1 on the expansion of MDSCs in RA using a collagen-induced inflammatory arthritis (CIA) mouse model. In DBA/1 mice, treatment with a small molecule-specific SHIP1 inhibitor 3α-aminocholestane (3AC) induced a marked expansion of MDSCs in vivo. Both pretreatment with 3AC of DBA/1 mice prior to CIA induction and intervention with 3AC during CIA progression significantly reduced disease incidence and severity. Adoptive transfer of MDSCs isolated from 3AC-treated mice, but not naïve MDSCs from normal mice, into CIA mice significantly reduced disease incidence and severity, indicating that the 3AC-induced MDSCs were the cellular mediators of the observed amelioration of the disease. In conclusion, inhibition of SHIP1 expands MDSCs in vivo and attenuates development of CIA in mice. Small molecule-specific inhibition of SHIP1 may therefore offer therapeutic benefit to patients with RA and other autoimmune diseases.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Colestanos/farmacología , Células Supresoras de Origen Mieloide/inmunología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Comunicación Celular , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Expresión Génica , Humanos , Cápsula Articular/efectos de los fármacos , Cápsula Articular/inmunología , Cápsula Articular/patología , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/trasplante , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/antagonistas & inhibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/inmunología , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología
14.
J Blood Med ; 12: 277-285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040472

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are heterogeneous lipid bilayer particles secreted by cells. EVs contain proteins, RNA, DNA and other cargo that can have immunomodulatory effects. Cancer-derived EVs have been described as having immunomodulating effects in vivo with immunosuppressive and pro-tumor growth capabilities. However, cancer-derived EVs have also been harnessed and utilized for anti-cancer potential. METHODS: To assess the immunomodulatory effect of EVs produced by acute myeloid leukemia (AML) cells, we isolated vesicles secreted by the murine AML cell line, C1498, and investigated their effect on in vitro and in vivo immune responses. RESULTS: These leukemia-derived EVs were found to induce increased proliferation of CD3+ cells and enhanced cytolytic activity of CD3+ cells directed toward leukemic cells in vitro. Injection of leukemia-derived EVs into syngeneic naïve mice induced T cell responses in vivo and resulted in enhanced immune responses upon T cell re-stimulation in vitro. CONCLUSION: These findings indicate that C1498-derived EVs have immunomodulatory effects on cell-mediated immune responses that could potentially be utilized to facilitate anti-leukemia immune responses.

16.
Aging (Albany NY) ; 12(24): 25939-25955, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33378745

RESUMEN

Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) ensuring homeostasis of blood production and immune response throughout life. Sex differences in immunocompetence and mortality are well-documented in humans. However, whether HSPCs behave dimorphically between sexes during aging remains unknown. Here, we show that a significant expansion of BM-derived HSPCs occurs in the middle age of female but in the old age of male mice. We then show that a decline of HSPCs in male mice, as indicated by the expression levels of select hematopoietic genes, occurs much earlier in the aging process than that in female mice. Sex-mismatched heterochronic BM transplantations indicate that the middle-aged female BM microenvironment plays a pivotal role in sustaining hematopoietic gene expression during aging. Furthermore, a higher concentration of the pituitary sex hormone follicle-stimulating hormone (FSH) in the serum and a concomitant higher expression of its receptor on HSPCs in the middle-aged and old female mice than age-matched male mice, suggests that FSH may contribute to the sexual dimorphism in aging hematopoiesis. Our study reveals that HSPCs in the BM niches are possibly regulated in a sex-specific manner and influenced differently by sex hormones during aging hematopoiesis.


Asunto(s)
Envejecimiento/fisiología , Hormona Folículo Estimulante/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Receptores de HFE/metabolismo , Caracteres Sexuales , Animales , Antígenos Ly/metabolismo , Médula Ósea , Trasplante de Médula Ósea , Linaje de la Célula , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo , Nicho de Células Madre
17.
Front Pharmacol ; 11: 769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581784

RESUMEN

BACKGROUND: Irisin, a newly identified peptide, is critical to regulating metabolism, thermogenesis, and reducing oxidative stresses. Our recent works demonstrated that irisin protected the heart against myocardial ischemic injury and preserved the function of mitochondria. However, whether irisin preserves myocardial performance and attenuates insulin resistance in type II diabetes remains unknown. OBJECTIVE: Effects of irisin on type II diabetes-induced cardiac dysfty unction and insulin resistance in db/db mice were studied. Methods: Homozygous db/db mice (n=5/each group) for spontaneous mutation (Leprdb ) and heterozygous (heterozygous) mice (n=5/each group) for control were used to assess for cardiac performance and impairment of insulin resistance. Homozygous and heterozygous controls received a treatment with either irisin (100 mg/kg, intraperitoneal injection, every other day) or vehicle control (PBS) for 4 weeks at 16 weeks of age. Insulin tolerance test and glucose tolerance test were employed to determine insulin resistance in mice. Cardiac function was assessed by echocardiography. Metabolic features including hyperglycemia and body growth were also examined. Immunohistochemical analysis was employed to determine myocardial hypertrophy and interstitial fibrosis. Immunoblots were employed to determine the signaling pathway associated with irisin treatment. RESULTS: Homozygous db/db mice developed an impairment in insulin sensitivity as indicated by Insulin tolerance test (ITT), glucose tolerance test (GTT) (p<0.05 vs non-irisin treatment), hyperglycemia (p<0.05 vs heterozygous control), and hyperinsulinemia (serum insulin: 0.81 ± 0.065 ng/ml in heterozygous control vs. 8.33 ± 0.69 ng/ml in homozygous db/db control, p<0.0001), which were attenuated by the administration of irisin (serum insulin 8.32 ± 0.68 ng/ml in homozygous db/db control vs 6.56 ± 0.38 ng/ml in homozygous db/db irisin treatment, p<0.0001). Furthermore, as compared to heterozygous control, db/db mice manifested a depression in cardiac performance [ejection fraction (EF): 91.9% ± 0.44 in heterozygous control vs 79.1% ± 2.0 in homozygous db/db control, p< 0.001] in associated myocardial remodeling (cardiac fibrosis 1.89% ± 0.09 in heterozygous control vs. 5.39% ± 0.22 in homozygous db/db control, p<0.001). Notably, the depression of cardiac function in EF (79.2% ± 2.0 homozygous db/db control vs. 88.6% ± 1.9 in homozygous db/db + irisin, p<0.01) and fractional shortening (FS) (42.2% ± 1.8 in homozygous db/db control vs. 53.2% ± 2.7 in homozygous db/db+irisin, p<0.01) and remodeling were markedly attenuated by the administration of irisin. Western blotting shows that irisin treatment prevented an approximate two-fold decrease in p38 phosphorylation and increase in histone deacetylase 4 (HDAC4) in the homozygous db/db myocardium (p<0.05 vs homozygous db/db control). CONCLUSION: Irisin preserves myocardial performance and insulin resistance in db/db mice, which is related to p38 phosphorylation and HDAC reduction.

18.
Am J Physiol Endocrinol Metab ; 318(5): E791-E805, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32182124

RESUMEN

Irisin, a newly identified myokine, is critical to modulating body metabolism and biological homeostasis. However, whether irisin protects the skeletal muscles against metabolic stresses remains unknown. In this study, we determine the effect of irisin on high glucose and fatty acid-induced damages using irisin-overexpressed mouse C2C12 (irisin-C2C12) myoblasts and skeletal muscle from irisin-injected mice. Compared with empty vector-transfected control C2C12 cells, irisin overexpression resulted in a marked increase in cell viability and decrease in apoptosis under high-glucose stress. Progression of the cell cycle into the G2/M phase in the proliferative condition was also observed with irisin overexpression. Furthermore, glucose uptake, glycogen accumulation, and phosphorylation of AMPKα/insulin receptor (IR) ß-subunit/Erk1/2 in response to insulin stimulation were enhanced by irisin overexpression. In irisin-C2C12 myoblasts, these responses of phosphorylation were preserved under palmitate treatment, which induced insulin resistance in the control cells. These effects of irisin were reversed by inhibiting AMPK with compound C. In addition, high glucose-induced suppression of the mitochondrial membrane potential was also prevented by irisin. Moreover, suppression of IR in irisin-C2C12 myoblasts by cotransfection of shRNA against IR also mitigated the effects of irisin while not affecting AMPKα phosphorylation. As an in vivo study, soleus muscles from irisin-injected mice showed elevated phosphorylation of AMPKα and Erk1/2 and glycogen contents. Our results indicate that irisin counteracts the stresses generated by high glucose and fatty acid levels and irisin overexpression serves as a novel approach to elicit cellular protection. Furthermore, AMPK activation is a crucial factor that regulates insulin action as a downstream target.


Asunto(s)
Adenilato Quinasa/metabolismo , Fibronectinas/farmacología , Glucosa/farmacología , Mioblastos/efectos de los fármacos , Ácido Palmítico/farmacología , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Fibronectinas/genética , Fibronectinas/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Mioblastos/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/fisiología
19.
Am J Physiol Cell Physiol ; 317(3): C525-C533, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31291142

RESUMEN

p38-Regulated/activated protein kinase (PRAK) plays a critical role in modulating cellular survival and biological function. However, the function of PRAK in the regulation of myocardial ischemic injury remains unknown. This study is aimed at determining the function of PRAK in modulating myocardial ischemia-reperfusion injury and myocardial remodeling following myocardial infarction. Hearts were isolated from adult male homozygous PRAK-/- and wild-type mice and subjected to global ischemia-reperfusion injury in Langendorff isolated heart perfusion. PRAK-/- mice mitigated postischemic ventricular functional recovery and decreased coronary effluent. Moreover, the infarct size in the perfused heart was significantly increased by deletion of PRAK. Western blot showed that deletion of PRAK decreased the phosphorylation of ERK1/2. Furthermore, the effect of deletion of PRAK on myocardial function and remodeling was also examined on infarcted mice in which the left anterior descending artery was ligated. Echocardiography indicated that PRAK-/- mice had accelerated left ventricular systolic dysfunction, which was associated with increased hypertrophy in the infarcted area. Deletion of PRAK augmented interstitial fibrosis and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive myocytes. Furthermore, immunostaining analysis shows that CD31-postive vascular density and α-smooth muscle actin capillary staining decreased significantly in PRAK-/- mice. These results indicate that deletion of PRAK enhances susceptibility to myocardial ischemia-reperfusion injury, attenuates cardiac performance and angiogenesis, and increases interstitial fibrosis and apoptosis in the infarcted hearts.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/deficiencia , Contracción Miocárdica/fisiología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/prevención & control , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...